Real time people search
Who is

Allen Hubbert

AL, Fayette, 581 Highway #107, 35555


No data available
Find hidden profiles and photos for Allen Hubbert across MySpace, Facebook and 40+ networks.


Church of Scientology Flag Service Organization - Wikipedia, the ...
The members of the Board of Directors at that time were Catherine Probst, Allen Hubbert and Debbie Cook. The corporation's President was Alicia Danilovich, ...
Allan Hubbard - Wikipedia, the free encyclopedia
Allan Hubbard or Allen Hubbard may refer to: Allan Hubbard (businessman) ( 1928–2011), New Zealand businessman; Allan B. Hubbard (born 1947), American ...
Scientology's corporate sham -
Mary Sue Hubbard - former Controller Alan Hubbert - former Guardian Office staff . April Huff - former USGO Finance Steve Huff - former Assistant Guardian ...
Operation Funny Bone - Scientology v. Armstrong
On May 10, 1977, Allen Hubbert, the AG Intel AOLA, reports to the Pac Sec for Intelligence Sandy about a “suitable guise call” he made to Newspaper Enterprise ...
No data available


No data available


No data available



Achilles Walk 2010: Stories of Hope
Gramie & Charles Dickens. Katherine Hill. Alan Hubbert. Rich Mason. Jacqueline McLemore. Cheryl Preston. Kristine Thayer. Jaclyn Drake. Ann & Alan Carline ...
Principles of Energy Conversion Part 3. Growth Rate & Hubbert's Peak
Jeffrey S. Allen Part 3. Growth Rate & Hubbert's Peak. September 13, 2012. Contents. 1 Exponential Growth Rate. 2. 1.1 Doubling Time .
m. king hubbert and his successors - The Coming Global Oil Crisis
Cambridge, Massachusetts: Wright-Allen Press, 1973. M. King Hubbert. "Survey of World Energy Resources." Canadian Mining and Metallurgical Bulletin 66 ( ...
Download Document - Allen County Solid Waste Management District
Allen County Commissioner. *composition required by statute. Staff Roster. Anthony Burrus, Director. Stacie Hubbert, Program Manager. Julie Smith, Business ...
Principles of Energy Conversion
Part4. Growth Rate &Hubbert'sPeak. Copyright © 2011 by J. S. Allen Principles of Energy Conversion Y First Y Prev Y Next Y Last Y GoBack Y FullScreen Y Close Y Quit ...
THE ALLEN COUNTY SOLID WASTE MANAGEMENT DISTRICT 2009 ANNUAL REPORT Allen County Solid ... DISTRICT STAFF District Director Anthony G. Burrus Program Manager Stacie L. Hubbert Fiscal ...
Has its Privileges & its Perks!
James W. Henry - Advisory Director CREDIT COMMITTEE CPT Richard Taylor- Chairman MAJ Allen Hubbert - Vice Chairman MRS Lynda Sims - Secretary SFC(RET) Lester Peck - Member 1LT ...
Cambridge, Massachusetts: Wright-Allen Press, 1973. M. King Hubbert. "Survey of World Energy Resources." Canadian Mining and Metallurgical Bulletin 66 (July 1973), pp ...
Tommy Battle George Clark Dr. Paul Hubbert Alabama Samuel Jones
Dr. Paul Hubbert – Alabama Education Association Mayor Samuel Jones – City of Mobile ... • Wendy Allen, Executive Director, Smart Coast • Mike Bell, Executive Director ...
def atty : morgan chad allen type: retained phone: 256-519-8782 def status: bond ori/offc: 0470000/inv reaves prosecutor: hubbert jonathon fairley sex: f ...
Respectfully Submitted, February 2004 Hon. Ronald J. Freeman, Chair Members Atiya Aftab, Esq. Hon. M. Christine Allen-Jackson, J.S.C. Rev. Darrell L. Armstrong, Pastor ...
Fossil Fuels - Resources: - Craving energy… Supplying our energy ...
Read “Hubbert’s Peak” by Ken Deffeyes Hubbert accurately predicted when US reserved would start to decline. In this book the same analysis is applied to
Here’s the Title1
... Coastal Sage Scrub: A Comparison with Chaparral and Coniferous Forest 1 Edith B. Allen 2 ... By contrast, pines have deep roots that seek water in rock fractures (Hubbert and ...
... John Gall Bob Trump Richard Schott Jaynell Chambers Carol Ebbitt Jennifer L. Allen Blake ... Norm Hubbert, neighboring resident, stated that the area was intended for residential ...


No data available

Social networks(13)

No data available
No data available
No data available
No data available
No data available
No data available
No data available
No data available
Find hidden profiles and photos for Allen Hubbert across MySpace, Facebook and 40+ networks.




No data available
Fewer homes partake in grinding of greens
FORT WAYNE In recent years, fewer people have been recycling Christmas trees.Stacie Hubbert, program manager for Allen County Solid Waste Management, hopes thats a sign of the economic times
Fewer homes partake in grinding of greens
FORT WAYNE In recent years, fewer people have been recycling Christmas trees.Stacie Hubbert, program manager for Allen County Solid Waste Management, hopes thats a sign of the economic times
On this day in History - Oct. 5
0578 - Justin II dies. Byzantine Emperor (565-78). 0610 - Coronation of Byzantine Emperor Heraclius.0869 - The Fourth Council of Constantinople is convened to decide about what to do about Patriarch Photius of Constantinople. 0877 - Charles the Bald dies (b. 0823). 1056 - Henry III, Holy Roman Emperor dies (b. 1017). 1112 - Sigebert of Gembloux dies. French chronicler. 1143 - The king Alfonso VII of Leon recognises Portugal as a Kingdom / Na Conferncia de Zamora, Afonso VII de Castela assina um tratado de paz com D. Afonso Henriques, na presena de um representante do Papa, sendo reconhecida a independncia de Portugal. 1214 - King Alfonso VIII of Castile dies (b. 1155). 1285 - King Philip III, the Stout, dies (b. 1245). King of France (1270-85). 1520 - Alessandro Cardinal Farnese was born (d. 1589). Italian cardinal. 1528 - Richard Fox dies. English churchman. 1540 - Helius Eobanus Hessus dies (b. 1488). German poet. 1541 - Nasce em Creta no Imprio Otomano Domenicos Theotocopuli - El Greco ( 1614) . Renomado pintor que trabalhou em Espanha, na cidade de Toledo. 1550 Foundation of Concepcin, city in Chile.1557 - Morte do aventureiro portugus Diogo lvares Correia. 1564 - Pierre de Manchicourt dies. Flemish composer. 1565 - Lodovico Ferrari dies (b. 1522). Italian mathematician. 1582 - Because of the implementation of the implementation of the Gregorian calendar this day does not exist in this year in Italy, Poland, Portugal and Spain. / ltimo dia do calendrio juliano (oficialmente os dias de 6 a 14 de Outubro no existiram). 1606 - Philippe Desportes dies (b. 1546). French poet. 1641 - Franoise-Athnas, marquise de Montespan was born (d. 1707). French mistress of Louis XIV of France. 1644 - Francisco de Santiago dies. Portuguese composer. 1658 - Mary of Modena was born (d. 1718). Queen of James II of England. 1665 - The University of Kiel is founded. 1678 - Thomas Strutz dies. German composer. 1678 - Juan de Dios Aguinao dies. Colombian bishop. 1695 - John Glas was born (d. 1773). Scottish minister. 1703 - Jonathan Edwards was born (d. 1758). American theologian and philosopher (Original Sin). 1712 - Francesco Guardi was born (d. 1793). Italian painter. 1713 - Denis Diderot was born (d. 1784). French philosopher and encylopedist. 1714 - Kaibara Ekiken dies (b. 1630). Japanese philosopher. 1715 - Victor de Riqueti, marquis de Mirabeau was born (d. 1789). French economist and politician.1717 - Marie-Anne de Mailly-Nesle duchess de Chteauroux was born (d. 1744). French mistress of King Louis XV of France.1740 - Johann Philipp Baratier dies (b. 1721). German scholar.1768 - Marqus de Pombal obriga, por decreto, os nobres portugueses anti-semitas que tivessem filhos em idade de casar, a organizar casamentos com famlias judaicas 1777 - Jn Andrej Segner dies (b. 1704). Slovak and German mathematician, physicist, and physician.1781 - Bernard Bolzano was born (d. 1848). Czech mathematician and philosopher. 1789 - French Revolution: Parisian women march to Versailles to confront Louis XVI about his refusal to promulgate the decrees on the abolition of feudalism. 1791 - Grigori Potemkin dies (b. 1739). Russian statesman.1792 - Joseph Crosfield was born (d. 1844). English soap and alkali manufacturer.1793 - French revolution disestablished Christianity in France. 1795 - Alexander Keith was born (d. 1873). Founded the Alexander Keith's brewing company in 1820. 1798 - Morgado de Mateus dies (b. 1722). Portuguese noble. 1799 - Antnio Dinis da Cruz e Silva dies in Rio de Janeiro, Brazil (b. 1731). Portuguese poet. His work mainly published after his death includes: Odes Pindricas (1801), o poema O Hissope (1802), e os seis volumes das Poesias (1807-1817). He belonged to the movement "Arcdia Lusitana" with Manuel Esteves Negro e Teotnio Gomes de Carvalho. 1805 - Charles Cornwallis, 1st Marquess Cornwallis dies (b. 1738). British general. 1810 - Maximiano Torres dies in Trafaria (b. 6 Feb 1748). Portuguese poet.1813 - Tecumseh dies in The Battle of Moraviantown that was decisive in the War of 1812. Some 600 British regulars and 1,000 Indian allies under English General and Shawnee leader Tecumseh were greatly outnumbered and quickly defeated by US forces under the command of Maj. Gen. William Henry Harrison. 1820 - David Wilber was born (d. 1890). American politician.1822 - Bruno Carranza Ramrez was born. President of Costa Rica (1870). 1824 - Henry Chadwick was born (d. 1908). English-born American baseball writer and statistician. 1829 - Chester A. Arthur was born in Fairfield, Vermont ( 1886). 21st President of the United States. 1837 - Hortense de Beauharnais dies (b. 1783). Queen of Holland and mother of the Emperor Napoleon III of France dies. 1844 - Francis William Reitz was born (d. 1934). State President of the Orange Free State.1848 - Guido von List was born (d. 1919). German writer.1848 - Joseph Hormayr Freiherr zu Hortenburg dies (b. 1781). Austrian politician. 1850 - Sergey Muromtsev was born (d. 1910). Russian lawyer and politician, and President of the First Imperial Duma.1857 - The City of Anaheim was founded.1861 - Antoni Melchior Fijakowski dies (b. 1778). Polish bishop. 1864 - The Indian city of Calcutta is almost totally destroyed by a cyclone 60,000 die. 1864 - Louis Lumire was born (d. 1948). French film pioneer / Nasce Louis Jean Lumire, que, com seu irmo Auguste, foi inventor do projector cinematogrfico e considerado, por muitos, como um dos pais do cinema ( 1948). 1869 - A strong hurricane devastates the Bay of Fundy region of Maritime Canada. The storm had been predicted over a year before by a British naval officer. 1877 - Chief Joseph surrenders his Nez Perce band to General Nelson A. Miles. 1878 - Louise Dresser was born (d. 1965). American actress. 1879 - Francis Peyton Rous was born ( 1970). American patologist, recipient of the Nobel Prize in Physiology or Medicine. 1880 - Jacques Offenbach dies (b. 1819). German-French composer (La Belle Helene, Orpheus, Tales of Hoffman).1882 - Robert Goddard was born ( 10 Aug 1945). American rocket scientist "father of the Space Age". 1887 - Ren Cassin was born (d. 1976). French judge, recipient of the Nobel Peace Prize. 1889 - Teresa de la Parra was born (d. 1936). Venezuelan writer.1892 - Remington Kellogg was born (d. 1969). American naturalist.1894 - Bevil Rudd was born (d. 1948). South African athlete. 1895 - The first individual time trial for racing cyclists is held on a 50-mile course north of London. 1897 - Fim da Guerra de Canudos (Bahia - Brasil). 1899 - Georg, Duke of Mecklenburg was born (d. 1962). Head of the House of Mecklenburg-Strelitz.1901 - John Alton was born (d. 1996). American cinematographer.1902 - Larry Fine was born (d. 1975). American actor and comedian. 1902 - Ray Kroc was born (d. 14 Jan 1984). American fast food entrepreneur: founder of McDonalds; 1903 - Sir Samuel Griffith is appointed the first Chief Justice of Australia and Sir Edmund Barton and Richard O'Connor are appointed as foundation justices. 1903 - M. King Hubbert was born (d. 1989). American geophysicist.1904 - John Hoyt was born (d. 1991). American film and television actor.1904 - Rosa Damasceno dies (b. 23 Fev 1849). Portuguese actress. 1905 - Wilbur Wright pilots Wright Flyer III in a flight of 24 miles in 39 minutes, a world record that stood until 1908. / Os irmos Wright realizam o primeiro vo circular do mundo (v. tambm em Histria da aviao). 1905 - Harriet E. MacGibbon was born (d. 1987). American actress.1906 - Cyro dos Anjos was born (d. 1994). Brazilian writer.1907 - Mrs. Miller was born (d. 1997). American singer. 1908 - Joshua Logan was born ( 12 Jul 1988). American film director and writer. 1908 - A Bulgria proclama a independncia, separando-se do Imprio Otomano. 1910 - Portugal overthrows the monarchy and declares istself a republic / A Repblica proclamada em Portugal, cerca das 10 horas da manh, nos Paos do Concelho de Lisboa. 1911 - Foras monrquicas comandadas por Paiva Couceiro realizam a primeira de vrias incurses no norte do pas. 1911 - Trmino do mandato do presidente portugus Tefilo Braga.1911 - Tropas italianas ocupam Trpoli, na Lbia, durante a guerra com a Turquia. 1911 - Flann O'Brien was born (d. 1966). Irish humorist.1912 - Fritz Fischer was born. Nazi war criminal.1913 - Eugene Bennett Fluckey was born (d. 2007). American Navy Submariner.1913 - Hans von Bartels dies (b. 1856). German painter.1914 - World War I first aerial combat resulting in a kill.1915 - Bulgaria enters World War I as one of the Central Powers. 1917 - Allen Ludden was born (d. 1981). American television game show host. 1918 - Roland Garros dies (b. 1888). French tennis player and stunt flyer. 1919 - Donald Pleasence was born (d. 1995). English actor (You Only Live Twice, Fantastic Voyage, Tale of Two Cities, The Adventures of Robin Hood). 1919 - Portugal: Antnio Jos de Almeida ocupa o lugar de Presidente da Repblica, em substituio do almirante Canto e Castro. 1921 - Bill Willis was born. American football player. 1921 - Baseball: The World Series was broadcast on the radio for the first time. 1922 - Jose-Froilan Gonzalez was born. Argentine race car driver. 1922 - Jock Stein was born (d. 1985). Scottish football player and manager. 1922 - Jose-Froilan Gonzalez was born. Argentine race car driver. 1922 - Bil Keane was born. American cartoonist.1922 - Jock Stein was born (d. 1985). Scottish footballer and manager.1923 - Albert Gumundsson was born (d. 1994). Icelandic professional football player and politician.1923 - Glynis Johns was born. British actress. 1923 - Philip Berrigan was born (d. 2002). American peace activist.1923 - Bill Wirtz was born (d. 2007). Longtime Chicago Blackhawks owner.1924 - Barbara Kelly was born (d. 2007). Canadian-born actress.1924 - Jos Donoso was born (d. 1996). Chilean writer.1924 - Bill Dana was born. Actor and comedian. 1925 - Gail Davis was born (d. 1997). American actress.1925 - Bob Thaves was born (d. 2006). American cartoonist (Frank and Ernest).1926 - Willi Unsoeld was born (d. 1979). American climber.1928 - Louise Fitzhugh was born (d. 1974). American author.1929 - Fred Feast was born (d. 1999). English actor.1929 - Richard F. Gordon, Jr. was born. American astronaut. 1930 - Anne Haddy was born (d. 1999). Australian actress.1930 - Reinhard Selten was born. German economist, Nobel Prize laureate. 1930 - Pavel Popovich was born. Soviet cosmonaut. 1930 - British Airship R101 crashed in France en-route to India on its maiden voyage. 1930 - Christopher Birdwood Thomson, 1st Baron Thomson dies (b. 1875). British military officer. 1930 - Reinhard Selten was born. German economist. 1932 - Michael John Rogers was born (d. 2006). English ornithologist.1933 - Diane Cilento was born. Australian actress. 1933 - Rene Adore dies (b. 1898). French actress.1933 - Nikolai Nikolaevich Yudenich dies (b. 1862). Russian general. 1934 - Angelo Buono, Jr. was born (d. 2002). American serial killer.1934 - Jean Vigo dies (26 Apr 1905). French film director. 1935 - Arlene Saunders was born. American soprano.1935 - Diahann Carroll was born. American actress. 1935 - Tarcsio Meira was born. Brazilian actor. 1936 - Vclav Havel was born. Playwright and President of the Czechoslovakia Republic. 1936 - The Jarrow March sets off for London. 1936 - J. Slauerhoff dies (b. 1898). Dutch poet and novelist (tuberculosis). 1937 - Barry Switzer was born. American football coach. 1938 - Teresa Heinz Kerry was born. American philanthropist, wife of John Kerry. 1938 - Saint Faustina dies (b. 1905). Polish religious. 1939 - Consuelo Ynares-Santiago was born. Filipino Supreme Court jurist.1939 - Marie Lafort was born. French singer and actress. 1939 - Marie-Claire Blais was born. French Canadian author and playwright. 1939 - Walter Wolf was born. Slovenian-born Canadian industrialist.1940 - Ballington Booth dies (b. 1857). Salvation Army Officer and co-founder of Volunteers of America.1940 - Lincoln Loy McCandless dies (b. 1859). American cattle rancher.1940 - Silvestre Revueltas dies (b. 1889). Mexican musician.1941 - Louis Dembitz Brandeis dies (b. 1856). U.S. Supreme Court Justice. 1941 - Eduardo Duhalde was born. President of Argentine. 1941 - Louis Dembitz Brandeis dies (b. 1856). U.S. Supreme Court Justice.1942 - Substituio do Ris pelo Cruzeiro como padro monetrio do Brasil. 1942 - Richard Street was born. American singer (The Temptations)1943 - Aprovada a lei que substitui o peso paraguaio pelo guarani. 1943 - Steve Miller was born. American musician The Steve Miller Band: The Joker, Rockn Me, Fly Like an Eagle, Jet Airliner, Abracadabra, Take the Money and Run. 1943 - Leon Roppolo dies (b. 1902). American musician. 1944 - Canadian Air Force pilots shoot down the first German Jet fighter over France.1944 - Suffrage is extended to women in France.1945 - Hollywood Black Friday: A six month strike by Hollywood set decorators turns into a bloody riot at the gates of Warner Brothers' studios.1945 - Brian Connolly was born (d. 1997). Scottish singer (Sweet).1945 - Geoff Leigh was born. English musician (Henry Cow).1946 - Jean Perron was born. Canadian ice hockey coach1946 - Zahida Hina was born. Pakistani columnist and story writer.1947 - The first televised White House address is given by President Harry S. Truman. 1947 - Brian Johnson was born. American singer (AC/DC) after replacing Bon Scott's death in 1980. 1948 - The 1948 Ashgabat earthquake kills 110,000.1948 - Tawl Ross was born. American musician (P Funk). 1948 - Zoran ivkovi was born. Serbian writer. 1949 - Ralph Goodale was born. Canadian politician.1949 - B.W. Stevenson was born (d. 1988). American country pop singer.1949 - Bill James was born. American baseball writer.1949 - WSAZ, the United States' first television station, located in Huntington, West Virginia, begins broadcasting. 1950 - 'Fast' Eddie Clarke was born. English guitarist (Motrhead, Fastway).1950 - Edward P. Jones was born. American writer.1950 - Jeff Conaway was born. American actor.1950 - Frederic Lewy dies (b. 1885). German neurologist.1951 - Karen Allen was born. American actress. 1951 - Bob Geldof was born. Irish singer, composer and humanist. 1952 - Clive Barker was born. English writer and film director. 1952 - Duncan Regehr was born. Canadian actor. 1952 - Gigi Sabani was born (d. 2007). Italian TV host.1952 - Vanderlei Luxemburgo was born. Brazilian football coach. 1952 - Joe Jagersberger dies (b. 1884 or 1885). Austrian racing driver.1953 - The first documented recovery meeting of Narcotics Anonymous. 1953 - Earl Warren was sworn in as the 14th Chief Justice of the United States. 1953 - Russell Mael was born. American pop singer (Sparks).1955 - ngela Molina was born. Spanish actress.1957 - Bernie Mac was born (d. 2008). American comedian.1957 - Lee Thompson was born. English saxophonist, vocalist.1957 - Mark Geragos was born. American attorney.1958 - Andr Kuipers was born. Dutsh astronaut.1960 - Daniel Baldwin was born. American actor. 1960 - Antnio de Oliveira Filho (Careca) was born. Brazilian football (soccer) player. 1961 - David Kirk was born. New Zealand rugby union footballer. 1961 - Matthew Kauffman was born. American journalist and George Polk Award winner.1961 - Sharon Cheslow was born. American musician, composer and artist.1962 - The Beatles released their first hit, "Love Me Do," in Britain. 1962 - Caron Keating was born (d. 2004). British television personality.1962 - Michael Andretti was born. American race car driver.1963 - Laura Davies was born. English golfer.1964 - Keiji Fujiwara was born. Japanese seiyu (voice actor). 1964 - Malik Saidullaev was born. Chechen businessman. 1964 - Warren E. Miller was born. Maryland politician. 1965 - Mario Lemieux was born. Canadian hockey player. 1965 - Patrick Roy was born. Canadian hockey player. 1966 - Near Detroit, Michigan there is a partial core meltdown at the Enrico Fermi demonstration nuclear breeder reactor, killing three workers.1966 - Peter Fonseca was born in Lisbon, Portugal. Canadian marathoner who won the 1996 Olympics. 1966 - Jan Verhaas was born. Dutch snooker referee. 1967 - Guy Pearce was born. English-born actor. 1968 - Police baton civil rights demonstrators in Derry, Northern Ireland - considered to mark the beginning of The Troubles.1969 - The first episode of the famous comedy show Monty Python's Flying Circus aired on BBC.1969 - Walter Hagen dies (b. 1892). American golfer. 1970 - PBS became a television network. 1970 - Montreal, Quebec: British Trade Commissioner James Cross is kidnapped by members of the FLQ terrorist group. 1970 - Agnes Barley was born. American artist.1970 - Josie Bissett was born. American actress.1970 - South Park Mexican was born. American rapper.1971 - Mauricio Pellegrino was born. Argentine former footballer.1972 - The Last Goon Show of All goes to air on BBC Radio, one of the most celebrated and influential programmes in the history of radio. 1972 - Grant Hill was born. American basketball player. 1972 - Thomas Roberts was born. American news anchor.1973 - Signature of the European Patent Convention 1974 - Guildford pub bombing by the IRA leaves 5 dead and 65 injured. 1974 - I Honestly Love You first reaches #1 on the Billboard charts, giving Olivia Newton-John her first top-selling single in the United States. 1974 - Colin Meloy was born. American singer songwriter.1974 - Heather Headley was born. Trinidadian singer. 1974 - Rich Franklin was born. American Mixed Martial Artist.1975 - Bobo Bald was born. Guinean football player. 1975 - Kate Winslet was born. English actress ( Titanic, Jude, Hamlet, Get Back). 1975 - Carlos Calado was born in Alcanena. Portuguese athlete. 1975 - Parminder Nagra was born. English actress. 1975 - Scott Weinger wads born. English actor.1976 - J. J. Yeley was born. American race car driver. 1976 - Song Seung-hun was born. South Korean actor. 1976 - Ramzan Kadyrov was born.Chechen President. 1976 - Lars Onsager dies (b. 1903). Norwegian chemist, Nobel Prize laureate. 1976 - Barbara Nichols dies (b. 1929). American actress.1978 - The Nobel Prize in Literature goes to... Author Isaac Bashevis Singer for ...his impassioned narrative art which, with roots in a Polish-Jewish cultural tradition, brings universal human conditions to life. 1978 - James Valentine wa born. American musician (Maroon 5).1978 - Jesse Palmer was born. Canadian-born American football player.1978 - Morgan Webb was born. Canadian-born television presenter.1978 - Shane Ryan was born. Irish Gaelic Football player. 1979 - Curtis Sanford was born. Canadian Hockey Goalie. 1979 - Jaime Chambers was born.American television reporter.1979 - Vincenzo Grella was born. Australian football player. 1980 - Paul Thomas was born. American musician (Good Charlotte). 1980 - Em Portugal, a coligao Aliana Democrtica obtm maioria absoluta nas eleies legislativas. 1981 - Raoul Wallenberg becomes an honorary U.S.A. citizen.1981 - Kelvin Tan Wei Lian was born. Singaporean singer. 1981 - Gloria Grahame dies (b. 1923). American actress.1983 - Lech Wasa was named winner of the Nobel Peace Prize, founder of Solidarity, campaigner for human rights, for his efforts on behalf of Polish workers1983 - Jesse Eisenberg was born. American actor1983 - Mashrafe Mortaza was born. Bangladeshi cricketer.1983 - Nicky Hilton was born. American heiress.1983 - Noot Seear was born. Canadian fashion model and actress.1983 - Earl Tupper dies (b. 1907). American inventor.1983 - Humberto Mauro dies (b. 1897). Brazilian film director and screenwriter.1984 - Marc Garneau becomes the first Canadian in space, aboard the Space Shuttle Challenger (41-6). 1984 - Kenwyne Jones was born. Trinidadian footballer. 1985 - Nicola Roberts was born. English singer (Girls Aloud). 1985 - Abdus Sattar dies. President of Bangladesh (1981-1982).1986 - Israel's secret nuclear weapons was revealed. The British newspaper The Sunday Times ran Mordechai Vanunu's story on its front page under the headline: "Revealed the secrets of Israel's nuclear arsenal." 1986 - Hal B. Wallis dies (b. 1898). American film producer. 1986 - James H. Wilkinson dies (b. 1919). English mathematician. 1986 - Mike Burgmann dies (b. 1947). Australian racing driver.1987 - Javier Villa was born. Spanish racing driver. 1987 - Kevin Mirallas was born. Belgian footballer.1988 - Brazil adopts its Constitution / Promulgada a nova Constituio do Brasil. Os territrios do Amap e Roraima so elevados a categoria de estado. O estado do Tocantins criado com o desmembramento do norte de Gois.1988 - The Chilean opposition coalition Concertacin (center-left) defeat Augusto Pinochet in his re-election intentions. Next year a general election was called. 1988 - Bahar Kzl was born. German Singer (Monrose).1988 - Bobby Edner was born. American actor.1988 - Maja Salvador was born. Filipina actress.1989 - The Dalai Lama, the spiritual and temporal leader of Tibet, was named winner of the Nobel Peace Prize. 1990 - After one hundred and fifty years The Herald broadsheet newspaper in Melbourne, Australia is published for the last time as a separate newspaper. 1990 - Mark Anthony Fitzpatrick was born. Irish radio host. 1990 - Myles Jeffrey was born. American actor.1991 - An Indonesian military transport crashes after takeoff from Jakarta killing 137. 1991 - The first official version of the Linux kernel, version 0.02, is released. 1992 - Eddie Kendricks dies (b. 1939). American singer.1993 - Jim Holton dies (d. 1951). Scottish footballer.1995 - Linda Gary dies (b. 1944). Voice actor. 1995 - Seamus Heaney won the Nobel Prize in literature . His works include: Death of a Naturalist (1966), Door into the Dark (1969), North (1975), Field Work (1979), The Spirit Level (1996) and the Nobel lecture Crediting Poetry. 1996 - Seymour Cray dies (b. 1925). American computer pioneer. 1997 - Brian Pillman dies (b. 1962). American professional wrestler.1998 - Jos Maria Lima de Freitas dies (b. 1927). Portuguese writer and artist. 1999 - The Ladbroke Grove rail crash. 1999 - Angel premieres on the WB network. 1999 - Kofi Annan presented a UN plan to take full control of East Timor and guide the territory to nationhood over 2-3 years. 2000 - Mass demonstrations in Belgrade leading to resignation of Slobodan Miloevi. 2000 - Catalin Haldan dies (b. 1976). Romanian football player.2001 - Tom Ridge resigned as Governor of Pennsylvania to become President Bush's Homeland Security Advisor. 2001 - Robert Stevens becomes the first victim in the 2001 anthrax attacks. 2001 - Mike Mansfield dies (b. 1903). American politician. 2002 - Chuck Rayner dies (b. 1920). National Hockey League goaltender.2003 - Akhmad Kadyrov elected President of Chechnya. 2003 - Denis Quilley dies (b. 1927). British actor. 2003 - Dan Snyder dies (b. 1978). Canadian hockey player. 2003 - Timothy Treadwell dies (b. 1957). Bear enthusiast featured in Grizzly Man.2004 - Portugal: Carlos Carvalhas renuncia ao cargo de secretrio geral do Partido Comunista Portugus. Jernimo de Sousa assume seu lugar.2004 - Maurice Wilkins dies (b. 1916). New Zealand-born physicist, recipient of the Nobel Prize in Physiology or Medicine. 2004 - William H. Dobelle dies (b. 1941). American biomedical engineer, Nobel Prize in Physiology or Medicine nominee.2004 - Rodney Dangerfield dies (b. 1921). American comedian. 2004 - Americans David J. Gross, H. David Politzer and Frank Wilczek won the 2004 Nobel Prize in physics for their explanation of the force that binds particles inside the atomic nucleus. Their theory of quantum chromodynamics explained who quarks behave. 2004 - Maurice Wilkins dies (b. 15 Dec 1916). New Zealand-born, British physicist, Nobel Prize laureate 2004 - Portugal: Carlos Carvalhas renuncia ao cargo de secretrio geral do Partido Comunista Portugus. Jernimo de Sousa assume seu lugar. 2004 - Rodney Dangerfield dies (b. 1921). American comedian.2004 - Maurice Wilkins dies (b. 1916). New Zealand-born physicist, Nobel laureate.2004 - William H. Dobelle dies (b. 1941). American biomedical engineer, Nobel Prize in Physiology or Medicine nominee.2005 - NHL started its season to end a year-and-a-half lockout. 2006 - Jennifer Moss dies (b. 1945). English actress.2006 - Antonio Pea dies (b. 1953). Mexican founder of lucha libre promotion AAA.2007 - Justin Tuveri dies (b. 1898). Italian veteran of the first Worl War.2009 - Mike Alexander dies (b. 1977). English bassist for Thrash Metal group Evile.Roman calendar: Mundus patet: a harvest feast involving the dead. Portugal - Republic Day, celebrates overthrow of the Monarchy in 1910, also on this day of 1143 Portugal was recognized as a country by the King of Spain Afonso IV. International World Teachers' Day (UNESCO).Indonesia - Army Day.French Republican Calendar - Rsda (Mignonette) Day, fourteenth day in the Month of Vendmiaire.Eastern Orthodox name day for St. Charitini.
The Oil Drum | Global Oil Risks in the Early 21st Century
This is a guest post by Dean Fantazzini, Moscow School of Economics, Moscow State University, Moscow, Russia; Mikael Höök, Uppsala University, Global Energy Systems, Department of Physics and Astronomy, Uppsala, Sweden; and André Angelantoni, Post-Peak Living, San Francisco, CA. This paper has been previously published in Energy Policy, Volume 39, Issue 12, December 2011, Pages 7865-7873. Abstract: The Deepwater Horizon incident demonstrated that most of the oil left is deep offshore or in other locations difficult to reach. Moreover, to obtain the oil remaining in currently producing reservoirs requires additional equipment and technology that comes at a higher price in both capital and energy. In this regard, the physical limitations on producing ever-increasing quantities of oil are highlighted, as well as the possibility of the peak of production occurring this decade. The economics of oil supply and demand are also briefly discussed, showing why the available supply is basically fixed in the short to medium term. Also, an alarm bell for economic recessions is raised when energy takes a disproportionate amount of total consumer expenditures. In this context, risk mitigation practices in government and business are called for. As for the former, early education of the citizenry about the risk of economic contraction is a prudent policy to minimize potential future social discord. As for the latter, all business operations should be examined with the aim of building in resilience and preparing for a scenario in which capital and energy are much more expensive than in the business-as-usual one. 1. Introduction An economy needs energy to produce goods and deliver services and the size of an economy is highly correlated with how much energy it uses (Brown et al., 2010a, Warr and Ayers, 2010). Oil has been a key element of the growing economy. Since 1845, oil production has increased from virtually nothing to approximately 86 million barrels per day (Mb/d) today (IEA, 2010), which has permitted living standards to increase around the world. In 2004 oil production growth stopped while energy hungry and growing countries like China and India continued increasing their demand. A global price spike was the result, which was closely followed by a price crash. Since 2004 world oil production has remained within 5% of its peak despite historically high prices (see Figure 1). Figure 1. Oil production stopped growing in 2004 while demand continued to increase. The result was a global oil price spike that contributed to the subsequent economic contraction. Liquid fuels include crude oil, lease condensate, natural gas plant liquids, other liquids, and refinery processing gains and losses as defined by the EIA. Source: Hirsch (2010) The combination of increasingly difficult-to-extract conventional oil combined with depleting supergiant and giant oil fields, some of which have been producing for seven decades, has led the International Energy Agency (IEA) to declare in late 2010 that the peak of conventional oil production occurred in 2006 (IEA, 2010). Conventional crude oil makes up the largest share of all liquids commonly counted as “ oil ” and refers to reservoirs that primarily allow oil to be recovered as a free-flowing dark to light-coloured liquid (Speight, 2007). The peak of conventional oil production is an important turning point for the world energy system because many difficult questions remain unanswered. For instance: how long will conventional oil production stay on its current production plateau? Can unconventional oil production make up for the decline of conventional oil? What are the consequences to the world economy when overall oil production declines, as it eventually must? What are the steps businesses and governments can take now to prepare? In this paper we pay particular attention to oil for several reasons. First, most alternative energy sources are not replacements for oil. Many of these alternatives (wind, solar, geothermal, etc.) produce electricity, not liquid fuel. Consequently, the world transportation fleet is at high risk of suffering from oil price shocks and oil shortages as conventional oil production declines. Though substitute liquid fuel production, like coal-to-liquids, will increase over the next two or three decades, it is not clear that it can completely make up for the decline of oil production. Second, oil contributes the largest share to the total primary energy supply, approximately 34%. Changes to its price and availability will have worldwide impact especially because alternative sources currently contribute so little to the world energy system (IEA, 2010). Figure 2. Fuel shares of world total primary energy supply. The “other” category includes tidal, solar and wind generation. Source: IEA (2007) Last, oil is particularly important because of its unique role in the global energy system and the global economy. Oil supplies over 90% of the energy for world transportation (Sorrell et al., 2009). Its energy density and portability have allowed many other systems, from mineral extraction to deep-sea fishing (two sectors particularly dependent on diesel fuel but sectors by no means unique in their dependence on oil), to operate on a global scale. Oil is also the lynchpin of the remainder of the energy system. Without it, mining coal and uranium, drilling for natural gas and even manufacturing and distributing alternative energy systems like solar panels would be significantly more difficult and expensive. Thus, oil could be considered an “enabling” resource. That is, it enables us to obtain all the other resources required to run our modern civilization. 2. The production perspective It is commonly claimed that peak oil, i.e. the concept that oil production will reach a maximum level and then decline, is only about geology. To some extent this is a result of the polarized debate that has raged between geologists, such as Hubbert (1949; 1956) or Campbell (1997; 2002), and economists, including Adelman (1990) and Lynch (2002; 2003). In fact, peak oil is the result of a complex set of forces that includes geology, reservoir physics, economics, government policies and politics. However, a solid understanding of the peaking and subsequent decline of oil production begins with acknowledging the natural laws that create a framework for everything. The intrinsic limitations of these laws eventually affect all human activities because neither economic incentives nor political will can bend or break these laws of nature. There are a number of physical depletion mechanisms that affect oil production (Satter et al., 2008). Depletion-driven decline occurs during the primary recovery phase when decreasing reservoir pressure leads to reduced flow rates. Investment in water injection, the secondary recovery phase, can maintain or increase pressure but eventually increasingly more water and less oil is recovered over time (i.e. increasing water cut). Additional equipment and technology can be used to enhance oil recovery in the tertiary recovery phase, but this comes at a higher price in terms of both invested capital and energy to maintain production. The situation is similar to squeezing water out of a soaked sponge. It is easy at first, but increasingly more effort is required for diminishing returns. At some point, it is no longer worth squeezing either the sponge or the oil basin and production is abandoned. Another way to explain peaking oil production is in terms of predator-prey behavior, as Bardi and Lavacchi (2009) have done. Their idea is that, initially, the extraction of “ easy oil ” leads to increasing profit and investments in further extraction capacity. Gradually the easiest (and typically the largest) resources are depleted. Extraction costs in both energy and monetary terms rise as production moves to lower quality deposits. Eventually, investments cannot keep pace with these rising costs, declining production from mature fields cannot be overcome and total production begins to fall. An additional factor plays an important role. In both models, regardless of the abundance of capital or high prices, an oil well is unable to deliver net energy at some point. Hubbert (1982) wrote: “ There is a different and more fundamental cost that is independent of the monetary price. That is the energy cost of exploration and production. So long as oil is used as a source of energy, when the energy cost of recovering a barrel of oil becomes greater than the energy content of the oil, production will cease no matter what the monetary price may be.” These physical trends conspire to make oil production increasingly difficult and expensive in monetary and energy terms. Economic incentives and technological advancement can slow these trends but they cannot be stopped. 2.1 Oil production today Production peaks occur for many energy sources ranging from firewood and whales to fossil fuels (Höök et al., 2010). Currently, around 60 countries have passed “ peak oil ” (Sorrell et al., 2009) — their point of maximum production. In most cases this is due to physical depletion of the available resources (e.g. USA, the UK, Norway, etc.) while in a few cases socioeconomic factors limit production (e.g. Iraq). Attempts to disprove peak oil that focus solely on the amount of oil available in all its forms demonstrate a fundamental, and an unfortunately common confusion between how much oil remains versus how quickly it can be produced. Although until recently, oil appeared to be more economically available than ever before (Watkins, 2006), others have shown this to be an artifact of statistical reporting (Bentley et al., 2007). Further, it is far less important how much oil is left if demand , for instance, is 90 Mb/d but only 80 Mb/d can be produced. Still, the most realistic reserve estimates indicate a near-term resource-limited production peak (Meng and Bentley, 2008; Owen et al., 2010). Total oil production is comprised of conventional oil, which is liquid crude that is easy and relatively cheap to pump, and unconventional oil, which is expensive and often difficult to produce. It is vital to understand that new oil is increasingly coming from unconventional sources like polar, deep water, and tar sands. Almost all the oil left to us is in politically dangerous or remote regions, is trapped in challenging geology or is not even in liquid form. Today, over 60% of the world production originates from a few hundred giant fields. The number of giant oil field discoveries peaked in the early 60s and has been dwindling since then (Höök et al., 2009). This is similar to picking strawberries in a field. We picked the biggest and best strawberries first (just like big oil fields they are easier to find) and left the small ones for later. Only 25 fields account for one quarter of global production and 100 fields account for half of production. Just 500 fields account for two-thirds of all the production (Sorrell et al., 2009a). As the IEA (2008) points out, it is far from certain that the oil industry will be able to muster the capital to tap enough of the remaining, low-return fields fast enough to make up for the decline in production from current fields. All oil sources are not equally easy to exploit. It takes far less energy to pump oil from a reservoir still under natural pressure than to recover the bitumen from tar sands and convert it to synthetic crude. The energy obtained from an extraction process divided by the energy expended during the process is the Energy Return on Energy Invested (EROEI). It is a return on investment calculation applied to a physical process. As Hubbert noted, regardless of the price the market is willing to pay for oil, just as we won’t spend a dollar to receive only a dollar in return, when we expend as much oil as we get back from a particular oil deposit, production will stop. The EROEI of US domestic oil production (chiefly originating from giant oil fields) has declined from 100:1 in 1930 to less than 20:1 for developments in the 2000s, e.g. Gulf of Mexico,(Gately, 2007; Hall et al., 2008; Murphy and Hall, 2010). Since giant and super giant oil fields dominate current production, they are good indicators for the point of peak production (Robelius, 2007; Höök et al., 2009). There is now broad agreement among analysts that the decline in existing production is between 4-8% annually (Höök et al., 2009). In terms of capacity, this means that roughly a new North Sea (~5 Mb/d) has to come on stream every year just to keep the present output constant. In 2010, the IEA (2010) abruptly announced that the peak of conventional oil production was reached in 2006. The IEA also again lowered their estimate of total world oil production to less than 100 Mb/d by 2035. However, it has been shown that the IEA oil production model is flawed. To reach the production level in their model, they assume oil field depletion rates that are so high that they have never been seen in any oil region before (Aleklett et al., 2010). The remaining oil simply cannot be produced as quickly as would be required to push the production peak as far into the future as they project, thus the peak must occur sooner than the IEA asserts. Miller (2011) found that the IEA had not addressed any of the recent critique and concluded that the IEA outlooks likely remain too optimistic. Most discussions about oil focus on the size of the resource left. However, in the near term, it is far more important to pay attention to production flows and the constraints operating on them. Peak oil is the point in time where production flows are unable to increase. It is not just underinvestment, political gamesmanship or remote locations that make oil production increasingly difficult. The physical depletion mechanisms (increasing water cut, falling reservoir pressure, etc.) will unavoidably affect production by imposing restrictions and even limitations on the future production of liquid crude oil. No amount of technology or capital can overcome this fact. 3. The economic perspective 3.1 The economics of oil supply One important feature of oil supply is its cyclical boom and bust cycle in prices and production. Maugeri (2010, p. 12-13) describes this phenomenon: “ if petroleum becomes scarce and there is no spare capacity...oil price climbs. This rise in prices fosters a new cycle of investment from which new production will flow. It also triggers gains in energy efficiency, consumer frugality and the rise of alternative energy resources. By the time the new production arrives at the market, petroleum demand may have dropped. This vicious circle has been a feature of all oil crises of the past. ” However, oil production recently became less responsive to traditional economic stimuli. The first decade of this century witnessed a dramatic increase in oil exploration and production when the price of oil increased (Sorrell et al., 2009; 2009a). Unfortunately, as noted already, total world oil production seems to have reached a plateau nonetheless. To a large degree this is because the oil that remains tends to be unconventional oil, which is expensive and takes more time to bring to market. Some consequences of having extracted much of the easy oil are the following: a) It takes significantly more time once a field is discovered to start production. Maugeri (2010) estimates it now takes between 8 and 12 years for new projects to produce first oil. Difficult development conditions can delay the start of production considerably. In the case of Kashagan, the world’s largest oil discovery in 30 years, production has been delayed by almost 10 years due to difficult environmental conditions. b) In mature regions, an increased drilling effort usually results in little increase in oil production because the largest fields were found and produced first (Höök and Aleklett, 2008; Höök et al., 2009). c) Because the cost of extracting the remaining oil is much higher than easy-to-extract OPEC or other conventional oil, if the market price remains lower than the marginal cost for long enough, producers will cut production to avoid financial losses. See Figure 3. d) Uncertainty about future economic growth heightens concerns for executing these riskier projects. This delays or often cancels projects (Figure 4). e) Most remaining oil reserves are in the hands of governments. They tend to under-invest compared to private companies (Deutsche Bank, 2009). f) Possible scarcity rents have to be taken into account. Hotelling (1931) showed that in the case of an depletable resource, price should exceed marginal cost even if the oil market were perfectly competitive (the resulting difference is called scarcity rent). If this were not the case, it would be more profitable to leave the oil in the ground, waiting to produce it until the price has risen. Hamilton (2009a, 2009b) noted that while in the 1990s the scarcity rent was negligible relative to costs of extraction, the strong demand growth from developing countries in the last decade together with limits to expanding production “ could in principle account for a sudden shift to a regime in which the scarcity rent is positive and quite important. ” In this regard, the Reuters news service reported on April 13, 2008 that “ Saudi Arabia’s King Abdullah said he had ordered some new oil discoveries left untapped to preserve oil wealth in the world’s top exporter for future generations, the official Saudi Press Agency (SPA) reported. ” Therefore, a possible intertemporal calculation considering scarcity rents may have already influenced (i.e. limited) current production. Although the sudden fall of prices at the end of 2008 is difficult to reconcile with scarcity rents, the following quick price recovery to the $70-$120 range during the enduring global financial crisis indicates that this aspect cannot be dismissed. This is despite the assertion by Reynolds and Baek (2011) that the Hotelling principle "... is not a powerful determinant of nonrenewable resources prices," and that   " ...the Hubbert curve and the theory surrounding the Hubbert curve is an important determinant of oil prices. " We agree that the Hubbert curve, which defines the depletion curve of a non-renewable resource, may be the prime determinant of oil price but it is not the only one. Figure 3. Global marginal cost of production 2008. Source: LCM Research based on Booz Allen/IEA data (Morse, 2009). The unlabeled items, from left to right are OPEC Middle East, Former Soviet Union and Enhanced Oil Recovery. The consequence of these issues is that in the short-medium term the available supply is essentially fixed and thus relatively straightforward to compute. As Figure 4 shows, net production capacity will decline due to the difficulty in finding new reserves at an accessible cost while the existing capacity is steadily depleted. Just as occurred in 2004, by 2011 there is again no new net capacity while the world economy, and thus oil demand, has resumed growth. After 2014, it appears that global oil production will begin its decline (See the second report of the UK Industry Taskforce on Peak Oil and Energy Security (UK ITPOES, 2010), Lloyd’s (2010), Deutsche Bank (2009, 2010), the report by the UK Energy Research Centre (Sorrell et al., 2009a) and the 2010 World Energy Outlook by the IEA (2010).) Figure 4. Global annual new gross production (blue bars), annual decline (grey bars) and net new oil production capacity (thin green line). Source: UK Industry Task Force on Peak Oil and Energy Security (2010) 3.2 The economics of oil demand Now an important question is what are the consequences of high oil prices on world economic growth? In the economic literature, Hamilton (2009b) and Kilian (2008; 2009) attempt an answer, while in the professional financial literature, the report by Deutsche Bank (2009) is one of the most comprehensive. Hamilton (2009b) in particular highlighted the importance of the share of energy expenditure as a percentage of total consumer expenditure. When this ratio is too high, an economic recession tends to occur. Similarly Deutsche Bank (2009) showed how each country seems to have a “ threshold percentage of national income at which crude pricing meets stern resistance and demand is broken .” Deutsche Bank (2009) asserts that for American consumers this point is when energy represents 7.5% of gross domestic product. This value is close to the one calculated by Hamilton (2009b) but is based on monthly data and uses a different methodology. In a more recent report, Deutsche Bank (2010) lowered this threshold to 6.5 % because "... the last shock set in motion major behavioral and policy changes that will facilitate rapid behavioral changes when the next one comes and underemployment and weak wage growth has increased sensitivity to gasoline prices. Last time it took $4.50/gal gasoline to finally tip demand, this time it might only take $3.75/gal to $4.00/gal to do it. " However, they also highlighted that " Americans have become comfortable with paying more for gasoline, and it may take higher prices to force behavior change ". Kopits (2009) suggested that when crude oil expenditures exceed 4% of GDP, oil prices increase by more than 50% year-on-year, and oil price increases are so great that a potential demand adjustment should have to reach 0.8% of GDP on an annual basis, then a recession in the US is very likely. A similar outcome was found by Hall et al. (2009) who showed a recession in the US is likely when oil amounts to more than 5.5% of GDP. We remark that the difference between the 4% (Kopits, 2009) and 5.5% (Hall et al., 2009) is simply a wholesale versus retail difference, and the result comes out the same [1] . Finally, Hamilton (2011) highlighted that 11 of the 12 U.S. Recessions since World War II were preceded by an increase in oil prices. Unfortunately, there is no clear alternative source of energy able to fully substitute for oil (see, for example, Maugeri (2010) for a recent non-technical review of the limits of alternative sources of energy with respect to oil). It possesses a combination of energy density, portability and historically very high EROEI that is difficult for alternatives to match. 4. A timely energy system transformation not assured As oil production declines, significant changes to the current oil-dependent economy in the medium term are likely to be needed. However, it isn’t clear that there will the financial means to implement such a change. For example, Deutsche Bank (2009, 2010) suggested that the widespread use of electric cars in the second part of this decade will be the disruptive technology that will finally destroy oil demand. Apart from technology and resource constraints (lithium necessary for electrical batteries is quite abundant in nature but production is currently very limited), the availability of sufficient financial resources to transition the entire vehicle fleet seems dubious. As Hamilton (2009b) demonstrates, tightened credit follows high oil prices and most vehicles are purchased on credit. Others suggest that natural gas is the next energy paradigm. Again, will be there sufficient financial resources to switch to it as oil production declines? Reinhart and Rogoff (2009, 2010) found that historically, after a banking crisis, the government debt on average almost doubles (86% increase) to bail out the banks and to stimulate the economy. They also showed that a sovereign debt crisis usually follows: not surprisingly we saw Iceland, Greece, Ireland, Hungary and Portugal turning to the EU/ECB and/or the IMF for financial help to refinance their public debts to avoid default. The need to switch to alternative energy sources with the enormous financial investments that such a task would require — and the simultaneous presence of large public and private debts — may well form a perfect storm. Figure 5. Public debt as a percent of GDP (2009/2010) taken from CIA Factbook (2010). Additional forces will play a role. New regulations to be introduced by Basel III are likely to impact investment expectations, budgeting and planning. Basel III is a new global regulatory standard on bank capital adequacy and liquidity proposed by the Basel Committee on Banking Supervision following the recent global financial crisis and whose aim is to "... to improve the banking sector's ability to absorb shocks arising from financial and economic stress, whatever the source, thus reducing the risk of spillover from the financial sector to the real economy ", BCBS (2009). Demography will also be extremely important in the next decade as well. Europe and the United States have aging populations and their baby boomers are entering pension age. China faces a similar demographic problem due to their one child policy, too. The combination of declining oil production (and thus oil priced high enough to cause recessions), high taxes, austerity measures, more restrictive credit conditions and demographic shifts have the potential to severely constrain the financial resources needed to move the economy away from oil and to alternative energy sources. Another consequence of this combination of forces is the likely contraction of the world economy (Hamilton, 2009b; Dargay and Gately, 2010). 4.1 Energy transition risks With higher priced oil, technology substitution (such as electric cars gradually replacing internal combustion engine cars) and fuel substitution (such as natural gas replacing oil) will occur. History is filled with many such examples and they are frequently highlighted in the debate. However, one must read carefully and not overstate the simplicity of an energy transition. For example, whale oil was – technically – an energy source in the 19th century, but the economy was based on coal at the time. Whale oil was used only for very specific purposes (primarily illumination), and the transition to kerosene was easy and occurred very rapidly. Bardi (2007) explored this in more detail and made several important remarks that pinpoint how difficult it can be to substitute energy sources.  In particular, he showed that resource scarcity often dramatically increases the amplitude of price oscillations, which often slow an energy source transition. Businesses and governments struggle with alternating circumstances of insufficient cash flow to handle price spikes and plummeting prices that don't cover their cost structure. Long term planning in this ever-changing environment becomes extremely difficult and investment — even highly needed investment — can drop precipitously. Friedrichs (2010) also cautions that after peak oil countries have several sociological trajectories available to them, they can follow predatory militarism like Japan before WWII, totalitarian retrenchment like North Korea, or, ideally, socioeconomic adaptation like Cuba after the fall of the Soviet Union. Given the recent century of conflict and the extensive weapon stocks and militaries held by modern nations (especially the United States, which spends on its military almost as much as the remaining countries of the world combined (SIPRI, 2011), there is simply no guarantee that the relatively peaceful period currently experienced by developed nations that is conducive to rapid energy source transitions will continue much longer. Koetse et al. (2008) showed that for both North America and Europe the capital-energy substitutability over the long term is large. In other words, if there is abundant capital, the economy can respond to higher oil prices with substitution. However, if declining oil causes a credit contraction similar to the crash of 2008, there may not be sufficient capital to replace existing equipment quickly. Even if there is sufficient capital, substitution has thus far operated with high and even increasing EROEI fuel sources. Since the transition from whale oil, each subsequent transition has been to an energy source with greater net energy profit. The energy dense fuels we are using now have allowed us to build our civilization. The difficulty this time is that we must move from highly profitable, in terms of energy, sources to lower profit alternatives like solar and wind. Researchers are beginning to ask the following important question: what is the minimum energy profit that must be sustained to allow us to operate our civilization? And, assuming alternatives are up to the job (this is not yet proven), can we complete the move away from oil before the overall EROEI gets too low? (Murphy and Hall, 2010) A further challenge is that, strictly speaking, for the last 150 years we have not transitioned from previous fuel sources to new ones — we have been adding them to the total supply. We are currently using all significant sources (coal, oil, gas and uranium) at high rates. Thus, it’s common but incorrect to say that we moved from coal to oil. In fact, we are using more coal now than we ever have (IEA, 2010). We never left the coal age. The challenge of moving to alternative energy sources while a particularly important source is declining, in this case oil, should not be underestimated. 4.2 Net oil exports decline faster than overall production The challenge may be greater still because net oil exports are set to fall more rapidly than overall oil production. Rubin (2007) points out that before the financial crisis many producer countries were experiencing economic booms. These countries export only the oil they don’t use themselves. The Middle East saw annual consumption increases of 5%. Russia was increasing at a 4% annual rate. It was only Russia’s increased production during the same period (accounting for 70% of the increase that came from OPEC, Russian and Mexican production during the early part of the last decade) that oil prices did not break records sooner than they did. Although the IEA has projected that oil use in OECD countries may already be declining (IEA 2010), they think that the oil appetite of non-OECD countries, which includes the producer countries, is not even close to being satisfied. Brown et al. (2010b) show how significant the squeeze of declining gross production and increasing producer country consumption can be, which they have named the Export Land Model. Increasing producer country consumption due to population growth acts as a strong “ magnification factor ” that removes oil very quickly from the export market. Using the top five exporting countries from 2005 (Saudi Arabia, Russia, Norway, Iran, and United Arab Emirates), they construct a scenario in which combined production declines at a very slight 0.5% per year over a ten year period for a total of 5%. Internal oil consumption for these exporters continues to grow at its current rate (2010). In this scenario net oil exports decline by 9.6%, almost double the rate oil production declines. Figure 6. Crude oil production, consumption and exports for Indonesia (left) and Egypt (right). Steadily increasing internal consumption coupled with a 1/3 drop in domestic production turned Indonesia into a net oil importer just 12 years after its peak of production. Egypt has lost all it oil export revenue and will soon follow Indonesia to become a net oil importer. Source: BP Statistical Review (2010). This accelerated loss of exportable oil can be seen in many producer countries that have passed their peak. Figure 6 shows the typical cases of Indonesia and Egypt. Indonesia has withdrawn from OPEC because they have no more exportable oil to offer the world market. Egypt is already incurring a public debt and is on the cusp of becoming a net oil importer, which will exacerbate already stretched public finances. As producer countries continue to grow their oil use even modestly and production declines (again, even modestly), there is an extremely high risk that net exportable oil will decline much faster than most observers are currently expecting. 4.3 Crash program may eventually replace declining oil Hirsch (2010) points out that a crash program to create liquid fuel savings and additional liquid fuels may be able to, at some point, make up for declining oil production (Figure 7). While the alternatives are ramping up and as oil production is declining, Hirsch (2008) estimates that the world economy will contract at approximately a one-to-one ratio. In his best-case scenario, using a 4% per year decline rate, an idealized crash program to produce liquid fuels does not pause contraction sooner than ten years after the onset of decline. Figure 7. Liquid fuel mitigation programs take at least ten years before they are able to make up for declining oil production. Source: Hirsch (2010) Other mitigation efforts like increased solar, wind and geothermal production may not be prioritized since they do not help the situation — they produce electricity and the world’s 800 million transportation, food production (i.e. tractors and harvesters) and distribution vehicles require liquid fuel. If the peak of oil production occurs this decade, there is insufficient time to avoid contraction because of how long it takes to transition the vehicle fleet. Even in their moderately aggressive scenario, Belzowski and McManus (2010) estimate that in a healthy, growing economy by 2050 still only 80% of the vehicle fleet in Europe and the U.S. would operate on alternative power trains. 5. Government risks A contracting economy presents governments with a host of problems that are not easy to resolve. Promises made to the citizenry, some in the form of social welfare programs, pensions and public union contracts, will be impossible to keep as the energy base of the economy declines. Downward wage pressure and reduced business activity will lower tax revenue. With lower revenues and greater demands in the form of social welfare support by an increasingly poorer citizenry, it is difficult to see how the accumulated (and growing) government debt can be paid back without rampant inflation. Though it is still unclear whether the government response will be hyperinflation (to minimize the debts) or extensive and massive debt defaults — or both — it is not likely that business as usual will continue as oil production declines. In business sectors that are highly dependent on oil, such as the automotive sector (Cameron and Schnusenberg, 2009), ill prepared companies that lack understanding of how price volatility may impact their firm will likely fail. In the case of the car companies some may fail a second time because their products are still not yet ready for a high-priced oil environment (Wei et al., 2010). Governments may not be willing to spend the money to rescue these businesses (such as the car company bailouts in the U.S.) and should be prepared for increasing unemployment as vulnerable sectors contract. To minimize potential future social discord, governments should immediately begin planning for contraction and educating their citizenry of the risk of contraction. Because poverty reduction is highly correlated with capital availability (World Bank 2001), as contraction occurs due to oil production decline, some countries may see the reversal of poverty reduction gains made in recent decades. Some governments may also have to contend with food and fuel riots as they did in 2007 and 2008. Other forms of crowd behavior, namely hoarding of fuel and food, may exacerbate the situation and governments should prepare accordingly. 6. Business risks In a joint report, Lloyd’s of London and Chatham House have advised all businesses to begin scenario-planning exercises for the oil price spike they assert is coming in the medium term (Lloyd’s, 2010). These planning exercises should scrutinize a company’s operations and balance sheet in fundamental ways. Like governments, businesses of all sorts may experience similar difficulty paying their debts as sales decline. Banks may see asset values fall further. Manufacturers in particular will have to contend with increased difficulties making and delivering products as oil production declines (Hirsch et al., 2005). It will prove imperative that business addresses this Schumpetarian shock (a structural change to industry that can alter what is strategically relevant) in a timely fashion (Barney, 1991). A significant benefit of cheap oil was that distance was relatively inexpensive. It is possible now to manufacture goods using far-flung operations. However, as oil declines, distance will, once again, become increasingly expensive, and oil price may begin to act as a trade barrier for many products. Another risk as oil production declines is the possibility of oil supply disruptions. If this should occur, much modern manufacturing may be impacted. Just-in-time manufacturing systems in which warehoused parts are minimized through the frequent replenishment of parts by parts suppliers — sometimes with multiple deliveries a day — have little tolerance for delivery delays. To prepare for this risk requires more than the drive for manufacturing efficiency that has generally characterized business. Supply chains should be examined with the aim of building in resilience and greater agility (Bunce and Gould, 1996; Krishnamurthy and Yauch, 2007), implying the loosening of tight and often brittle couplings between suppliers and manufacturers (Christopher and Towill, 2000; Towill and Christopher, 2001). With little or no slack in the system (fewer warehoused parts, etc.), just one supplier failing to deliver a part or supplier hoarding can shut down a production process. 7. Conclusion The Deepwater Horizon incident demonstrated that most of the oil left is deep offshore or in other difficult-to-reach locations. Moreover, obtaining the oil remaining in currently producing reservoirs requires additional equipment and technology that comes at a higher price in both capital and energy. In this regard, we reviewed the physical perspective of peak oil and some of the limitations on producing ever-increasing quantities of oil were highlighted as well as the possibility of the peak of production occurring this decade. We then briefly discussed the economics of oil supply and demand, showing why the available supply is basically fixed in the short-medium term, and highlighting the importance of a high energy expenditure share as a percentage of total consumer expenditures sounding an alarm bell for economic recessions. Moreover, we remarked that the potential financial resources available in the future to switch to alternative sources of energy will be limited due to several factors ranging from the high levels of debt (both private and public) to the aging of the populations in Western countries and China. We also noted that, even with very slight production decline rates, net oil exports decline significantly faster than total oil production as the economies of producer countries grow. In such a context, risk mitigation practices are called for, both at the government level and at the business level to prepare for high and likely volatile oil prices. Governments should begin educating their citizenry of the risk of contraction to minimize potential future social discord. Businesses should examine their operations and balance sheets with the aim of building in resilience. It also implies preparing for a scenario in which capital and energy are much more expensive than in the business-as-usual one. Acknowledgements We are grateful to the reviewers and colleagues who provided valuable comments on drafts of this paper. Special thanks to Simon Snowden for outstanding assistance. References Adelman, M.A., 1990. Mineral depletion, with special reference to petroleum . Review of Economics and Statistics, 72(1), 1–10. Aleklett, K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., Söderbergh, B., 2010. The Peak of the Oil Age — analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 38(3), 1398-1414. Bardi, U., 2007. Energy Prices and Resource Depletion: Lessons from the Case of Whaling in the Nineteenth Century . Energy Sources, Part B: Economics, Planning, and Policy, 2(3), 297–304. Bardi, U., Lavacchi, A., 2009. A simple interpretation of Hubbert’s model of resource exploitation . Energies 2(3), 646–661. Barney, J.B. 1991. Firm resources and sustained competitive advantage . Journal of Management, 17(1), 99-120. BCBS Consultative Proposal, 2009. Strengthening the resilience of the banking sector . Available from: Belzowski, B.M., McManus, W., 2010. Alternative power train strategies and fleet turnover in the 21st century . University of Michigan, report no. UMTRI-2010-20, August 2010. Bentley, R.W., Mannan, S.A., Wheeler, S.J., 2007. Assessing the date of the global oil peak: the need to use 2P reserves. Energy Policy 35(12), 6364–6382. BP, 2010. BP Statistical Review of World Energy 2010 . See also: Brown, J.H., Burnside, W.R., Davidsson, A.D., DeLong, J.P., Dunn, W.C., Hamilton, M.J., Mercado-Silva, N., Nekola, J.C., Okie, J.G., Woodruff, W.H., Zuo, W. 2010a. Energetic limits to economic growt h. Bioscience, 61(1), 19-26. Brown, J., Foucher, S., Silveus, J., 2010b. Peak Oil Versus Peak Net Exports — Which Should We Be More Concerned About? Association for the Study of Peak Oil and Gas presentation in Washington D.C., 8 October 2010, Bunce, P., Gould, P., 1996. From Lean to Agile Manufacturing .IEE Colloquium Digest, 1996, Issue 278. Cameron, K., and Schnusenberg, O., 2009. Oil prices, SUVs, and Iraq: An investigation of automobile manufacturer oil price sensitivity . Energy Economics, 31(3), 375-381. Campbell, C.J., 1997. The coming oil crisis . Multi-Science Publishing, Brentwood. Campbell, C.J., 2002. Petroleum and people . Population & Environment, 24(2), 193–207. CIA Factbook, 2010. The World Factbook . See also: Christopher, M., Towill, D.R., 2000. Marrying the Lean and Agile Paradigms .Proc. EUROMA Conference, Ghent, 2000, 114-121. Dargay J.M., Gately, D., 2010. World oil demand’s shifttoward faster growing and less price-responsive products and regions . Energy Policy, 38(10), 6261-6277. Deutsche Bank, 2009. The Peak Oil Market — price dynamics at the end of the oil age . Deutsche Bank Securities. Deutsche Bank, 2010. The End of the Oil Age. 2011 and beyond: A reality check . Global Markets Research. Friedrichs, J., 2010. Global energy crunch: How different parts of the world would react to a peak oil scenario . Energy Policy, 38(8), 4562–4569.   Gately, M., 2007. The EROI of U.S. offshore energy extraction: A net energy analysis of the Gulf of Mexico. Ecological Economics, 63(2-3), 355-364. Hall, C.A.S., Powers, R., Schoenberg, W., 2008. Peak Oil, EROI, investments and the economy in an uncertain future . In: Pimentel, D (Ed.) Biofuels, solar and wind as renewable energy systems. Springer, New York. Hall C.A.S., Balogh, S., Murphy, D.J.R., 2009. What is the Minimum EROI that a Sustainable Society Must Have? Energies, 2(1), 25-47. Hamilton, J., 2009a. Understanding crude oil prices, Energy Journal, 30(2), 179-206. Hamilton, J., 2009b. Causes and consequences of the oil shock of 2007-08 . Brookings Papers on Economic Activity, Spring 2009, 215-259. Hamilton, J., 2011. Historical oil shocks. In: Parker, R.E., Whaples, R.M. (Ed.), Handbook of Major Events in Economic History , Routledge, ISBN: 978-0415677035 Hirsch, R.L., Bezdec, R., Wendling, R., 2005. Peaking of world oil production: impacts, mitigation, & risk management . See also: Hirsch, R., 2008. Mitigation of maximum world oil production: Shortage scenarios . Energy Policy, 36(2), 881–889. Hirsch, R., 2010. The impending world energy mess . Association for the Study of Peak Oil and Gas presentation in Washington D.C., 8 October 2010, Höök, M., Aleklett, K., 2008. A decline rate study of Norwegian oil production . Energy Policy, 36(11), 4262-4271. Höök, M., Bardi, U., Feng, L., Pang, X., 2010 . Development of oil formation theories and their importance for peak oil . Marine and Petroleum Geology, 27(9), 1995-2004. Höök, M., Hirsch, R., Aleklett, K., 2009. Giant oil field decline rates and their influence on world oil production . Energy Policy, 37(6), 2262-2272. Hotelling, H., 1931. The economics of exhaustible resources . Journal of Political Economy, 39, 137-175. Hubbert, M.K., 1949. Energy from fossil fuels . Science, 109(2823), 103–109. Hubbert MK, 1956. Nuclear energy and the fossil fuels. Presented before the Spring Meeting of the Southern District, American Petroleum Institute, Plaza Hotel, San Antonio, Texas, March 7–9, Hubbert, M.K., 1982. Response to David Nissen International Energy Agency, 2007. World Energy Outlook 2007 . See also: International Energy Agency, 2010. World Energy Outlook 2010 . See also: Kilian, L., 2008. Exogenous oil supply shocks: how big are they and how much do they matter for the U.S. economy? Review of Economics and Statistics, 90(2), 216-240. Kilian, L., 2009. Not all oil price shocks are alike: disentangling demand and supply shocks in the crude oil market . American Economic Review, 99(3), 1053-1069. Krishnamurthy, R. and Yauch, C.A. 2007. Leagile manufacturing: a proposed corporate infrastructure . International Journal of Operations & Production Management, 27(6), 588–604. Koetse, M., de Groot, H., Florax, R. 2008. Capital-energy substitution and shifts in factor demand: A meta-analysis . Energy Economics, 30, 2236–2251. Kopits, S., 2009. Oil: What price can America afford? Douglas Westwood Energy Business Analysts, Research Note, June 2009 Lloyd’s of London and Chatham House, 2010. Sustainable energy security — strategic risks and opportunities for business. Lloyd’s of London white paper on sustainable energy security. See also: Lynch, M.C., 2002. Forecasting oil supply: theory and practice . The Quarterly Review of Economics and Finance, 42(2), 373–389. Lynch, M.C., 2003. The new pessimism about petroleum resources: debunking the Hubbert model (and Hubbert modelers) . Minerals & Energy - Raw Materials Report, 18(1), 21–32. Maugeri, L., 2010. Beyond the age of oil . Praeger, New York. Meng, Q.Y., Bentley, R.W., 2008. Global oil peaking: responding to the case for ‘abundant supplies of oil . Energy, 33(8), 1179-1184. Miller, R.G., 2011. Future oil supply: the changing stance of the International Energy Agency . Energy Policy, 39(3), 1569–1574. Morse, E., 2009. New oil market realities .National Association of State Energy officials conference presentation in Washington, D.C. 2009, LCM Research using Booz Allen, IEA data Murphy, D.J., Hall, C.A.S., 2010. Year in review — EROI or energy return on (energy) invested . Annals of the New York Academy of Sciences, 1185, 102–118. Owen, N.A., Inderwildi, O.R., King, D.A., 2010. The status of conventional world oil reserves — Hype or cause for concern? Energy Policy, 38(8), 4743-4749. Reinhart, C., Rogoff, K., 2009. This time is different: eight centuries of financial folly . Princeton University Press, New Jersey. Reinhart, C. Rogoff, K., 2010. After the fall . Federal Reserve Bank of Kansas City economic policy symposium “ Macroeconomic Policy: Post-Crisis and Risks Ahead ” held at Jackson Hole, Wyoming, on August 26-28, 2010. Reynolds, D.B., Baek, J., 2011.  Much ado about Hotelling: Beware the ides of Hubbert , Energy Economics, article in press Robelius, F., 2007. Giant oil fields — the highway to oil: giant oil fields and their importance for future oil production . Doctoral thesis, from Uppsala University, Rubin, J., Buchanan, P., 2007. OPEC’s growing call on itself . CIBC Worldmarkets. Satter, A., Iqbal, G.M., Buchwalter, J.L., 2008. Practical Enhanced Reservoir Engineering . Pennwell Books. Tulsa. Speight, J., 2008. Synthetic Fuels Handbook: Properties, Process, and Performance . McGraw-Hill Professional, Sorrell, S., Speirs, J., Bentley R., Brandt A., Miller, R., 2009a. An assessment of the evidence for a near-term peak in global oil production , UK Energy Research Centre, London. Sorrell, S., Speirs, J., Bentley, R. Brandt, A., Miller, R., 2009b. Global oil depletion: A review of the evidence . Energy Policy, 38(9), 5290-5295. Towill, D.R., Christopher, M., 2001. The supply chain strategy conundrum ~ to be Lean or Agile or to be Lean and Agile . Proceedings of the International Logistics Symposium, Salzburg, 2001, pp 3-12. UK Industry Task Force on Peak Oil and Energy Security, 2010. The Oil Crunch — a wake-up call for the UK economy . Second report of the UK ITPOES. Warr, B.S., Ayres, R.U., 2010. Evidence of causality between the quantity and quality of energy consumption and economic growth. Energy, 35(4), 1688–1693. Watkins, G.C., 2006. Oil scarcity: what have the past three decades revealed? Energy Policy 34(5), 508–514. Wei, Y., Wang, Y. and Huang, D., 2010. Forecasting crude oil market volatility: Further evidence using GARCH-class models . Energy Economics, 32(6), 1477-1484. World Bank, 2001. Finance for growth: policy choices in a volatile world - a World Bank Policy Research Report . Washington D.C.: World Bank. [1] We want to thank Gail Tverberg for pointing out this difference.
ROBERT DEWITT: Every politician needs a good campaign slogan
Paul Hubbert ran for governor a couple of times ... Here locally there are a few opportunities for brutally honest slogans. Rep. Alan Harper could proclaim, “I part my hair this way so you can't tell which party I'm in.”
No data available
No data available
No data available
No data available
No data available

Related people(15)

Alan Hubbert Decatur AL 35601
Alanna D Hubbert Walnut Creek CA 94596
Albert L Hubbert North East MD 21901
Albert L Hubbert North East MD 21901
Alberta Hubbert Palatka FL 32177
Alberta Hubbert Palatka FL 32177
Alberta Hubbert Saginaw MI 48604
Alberta Hubbert Saginaw MI 48604
Alfred N Hubbert Chicago IL 60621
Alfred J Hubbert Chicago IL 60640
Algerine Hubbert Sac City IA 50583
Alice J Hubbert Northport AL 35476
Alice F Hubbert Baton Rouge LA 70805
Alice V Hubbert Hernando MS 38632
Alicia Hubbert Long Beach CA 90806




No data available
Church of Scientology Flag Service Organization
The members of the Board of Directors at that time were Catherine Probst, Allen Hubbert and Debbie Cook. The corporation's President was ...
Cork Hubbert
Cork Hubbert (July 3, 1952 – September 28, 2003) was an American film and ... supporting cast of the 1985 Nancy Allen comedy Not for ...
Hubbert peak theory
The Hubbert peak theory says that for any given geographical area, from an ... than generally expected. Dale Allen Pfeiffer claims that coming ...
Hubbertville, Alabama
Fayette County , Alabama , United States , partially within the town of Glen Allen . Hubbert's Grocery, B & M Grocery, Jones Bridge & ...
Hubbertville School
Northern Fayette County, Alabama , within the corporate limits of Glen Allen, Alabama . ... is named for the Curt Hubbert family who donated ...
Sustainability measurement
sooner than generally expected. Dale Allen Pfeiffer claims that ... Anthracite was studied by Hubbert, and matches a curve closely ...
Not for Publication
is a 1984 screwball comedy film directed by Paul Bartel and starring Nancy Allen . ... Cast : Cork Hubbert as Odo. Laurence Luckinbill as Mayor ...
Kenneth S. Deffeyes
Kenneth S. Deffeyes is a geologist who worked with M. King Hubbert , the creator ... See also Other peak oil educators : Dale Allen Pfeiffer ...
List of masters of Gresham's School
1858–1867: Reverend Charles Allen Elton, MA BD (Cantab.), fellow of ... Second Masters : 1851–1857: John Hubbert Kent. 1858–1860: J. Rodney ...
Peak oil
M. King Hubbert created and first used the models behind peak oil ... out-paces production Physicist Albert Allen Bartlett argues that the ...